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Let M be a Riemannian manifold and L : TM × [0,T ]→ R a Lagrangian on M.

Let q ∈ C1
a,b([0,T ]; M) := {q ∈ C1([0,T ],M), q(0) = a, q(T ) = b}.

The action functional C : C1
a,b([0,T ]; M)→ R is defined by

C (q(·)) :=

∫ T

0
L (q(t), q̇(t), t) dt .

The critical points for C satisfy the Euler-Lagrange equation

d
dt

(
∂L
∂q̇

)
−
∂L
∂q

= 0.
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Suppose that the configuration space M = G is a Lie group and L : TG→ R is a
left invariant Lagrangian:

`(ξ) := L(e, ξ) = L(g, g · ξ), ∀ξ ∈ TeG, g ∈ G.

(here and in the sequel, g · ξ = TeLgξ)
The action functional C : C1

a,b([0,T ]; G)→ R is defined by

C (g(·)) :=

∫ T

0
L (g(t), ġ(t)) dt =

∫ T

0
`(ξ(t)) dt ,

where ξ(t) := g(t)−1 · ġ(t).
[J.E. Marsden, T. Ratiu 1994] [J.E. Marsden, J. Scheurle 1993]: g(·) is a critical
point for C if and only if it satisfies the Euler-Poincaré equation on T∗e G

d
dt

(
d`
dξ

)
− ad∗ξ(t)

(
d`
dξ

)
= 0,

where ad∗ξ : T∗e G→ T∗e G is the dual action of adξ : TeG→ TeG:

〈ad∗ξ η, θ〉 = 〈η, adξ θ〉, η ∈ T∗e G, θ ∈ TeG.
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We will be interested in variations ξ(·) satisfying

ξ̇(t) = ν̇(t) + adξ(t) ν(t) for some ν ∈ C1([0,T ], TeG),

which is equivalent to the variation of g(·) with the perturbation
gε(t) = g(t)eε,ν(t), where eε,ν(t) is the unique solution to the following ODE on
G: { d

dt eε,ν(t) = εeε,ν(t) · ν̇(t),
eε,ν(0) = e.
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Let M be a n-dimensional compact Riemannian manifold. We define

Gs :=
{

g : M → M a bijection , g, g−1 ∈ Hs(M,M)
}
,

where Hs(M,M) denotes the manifold of Sobolev maps of class s > 1 +
n
2

from

M to itself.

If s > 1 +
n
2

then Gs is a C∞ Hilbert manifold.

Gs is a group under composition between maps, right translation is smooth, left
translation and inversion are only continuous. Gs is also a topological group (but
not an infinite dimensional Lie group).
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The tangent space TηGs at arbitrary η ∈ Gs is

TηGs =
{

U : M → TM of class Hs, U(m) ∈ Tη(m)M
}
.

The Riemannian structure on M induces the weak L2, or hydrodynamic, metric
〈·, ·〉0 on Gs given by

〈U,V 〉0η :=

∫
M
〈Uη(m),Vη(m)〉m dµg(m),

for any η ∈ Gs , U,V ∈ TηGs . Here Uη := U ◦ η−1 ∈ TeGs and µg denotes the
Riemannian volume asociated with (M, g).

Obviously, 〈·, ·〉0 is a right invariant metric on Gs .
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Let ∇ be the Levi-Civita connection associated with the Riemannian manifold
(M, g). We define a right invariant connection ∇0 on Gs by(

∇0
X̃

Ỹ
)

(η) :=
∂

∂t

∣∣∣
t=0

(
Ỹ (ηt ) ◦ η−1

t

)
◦ η +

(
∇XηYη

)
◦ η,

where X̃ , Ỹ ∈ L (Gs), Xη := X̃ ◦ η−1,Yη := Ỹ ◦ η−1 ∈ L s(M), and η is a C1

curve in Gs such that η0 = η and
d
dt

∣∣∣
t=0
ηt = X̃(η). Here L (Gs) denotes the set

of smooth vector fields on Gs .

∇0 is the Levi-Civita connection associated to
(
Gs, 〈·, ·〉0

)
.
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For s > 1 + n
2 , let

Gs
V :=

{
g, g ∈ Gs, g is volume preserving

}
.

Gs
V is still a topological group.

The tangent space TeGs
V is

G s
V = TeGs

V =
{

U, U ∈ TeGs, div(U) = 0
}
.

The L2-metric 〈·, ·〉0 and its Levi-Civita connection ∇0,V are defined on Gs
V by

orthogonal projection. More precisely the Levi Civita connection on Gs
V is given by

∇0,V
X Y = Pe(∇0

X Y ) with Pe the orthogonal projection on G s
V :

Hs(TM) = G s
V ⊕ dHs+1(M).
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Euler-Poincaré equation on Gs
V

Consider the ODE on M { d
dt (gt (x)) = u (t , gt (x))

g0(x) = x .

Here u(t , ·) ∈ TeGs for every t > 0.

For every fixed t > 0, gt (·) ∈ Gs(M). So g ∈ C1([0,T ],Gs).

If div(u(t)) = 0 for every t then g ∈ C1([0,T ],Gs
V )
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Euler-Poincaré equation on Gs
V

[V.I. Arnold 1966] [D.G. Ebin, J.E. Marsden 1970] A Lagrangian path
g ∈ C2([0,T ],Gs

V ) satisfying the equation above is a geodesic on
(
Gs

V , 〈·, ·〉
0,V )

(i.e. ∇0,V
ġ(t)ġ(t)) if and only of the velocity field u satisfies the Euler equation for

incompressible inviscid fluids

(E)

{
∂u
∂t = −∇uu −∇p

divu = 0

Notice that the term ∇p corresponds to the use of ∇0 instead of ∇0,V : the first
system rewrites as {

∂u
∂t = −∇0,V

u u
divu = 0
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Notice that the term ∇p corresponds to the use of ∇0 instead of ∇0,V : the first
system rewrites as {

∂u
∂t = −∇0,V

u u
divu = 0
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V , 〈·, ·〉
0
)

Euler-Poincaré equation on Gs
V

If we take ` : TeGs
V → R as

`(X) := 〈X ,X〉, X ∈ TeGs
V ,

and define the action functional C : C1
e,e([0,T ],Gs

V )→ R by

C (g(·)) :=

∫ T

0
`
(

ġ(t) · g(t)−1
)

dt ,

then a Lagrangian path g ∈ C2([0,T ],Gs
V ) integral path of u is a critical point of C

if and only if u satisfies the Euler equation (E). [J.E. Marsden, T. Ratiu 1994]
[J.E. Marsden, J. Scheurle 1993]

Marc Arnaudon Stochastic Euler-Poincaré reduction.



Deterministic framework
Stochastic framework

Euler-Poincaré equations
Diffeomorphism group on a compact Riemannian manifold
Volume preserving diffeomorphism group
Lagrangian paths
Characterization of the geodesics on

(
Gs

V , 〈·, ·〉
0
)

Euler-Poincaré equation on Gs
V

[S. Shkoller 1998] If we take ` : TeGs
V → R as the H1 metric

`(X) :=

∫
M
〈X ,X〉m dµg(m) + α2

∫
M
〈∇X ,∇X〉m dµg(m), X ∈ TeGs

V ,

and define the action functional C : C1
e,e([0,T ],Gs

V )→ R in the same way as
before, then a Lagrangian path g ∈ C2([0,T ],Gs

V ) integral path of u is a critical
point of C if and only if u satisfies the Camassa-Holm equation

∂ν
∂t + u · ν + α2 (∇u)∗ ·∆ν = ∇p,

ν = (1 + α2∆)u,
div(u) = 0.
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Aim: to establish a stochastic Euler-Poincaré reduction theorem in a general Lie group.
To apply it to volume preserving diffeomorphisms of a compact symmetric space.
Stochastic term will correspond for Euler equation to introducing viscosity.
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An Rn-valued semimartingale ξt has a decomposition

ξt (ω) = Nt (ω) + At (ω)

where (Nt ) is a local martingale and (At ) has finite variation.
If (Nt ) is a martingale, then

E[Nt |Fs] = Ns, t ≥ s.

We are interested in semimartingales which furthermore satisfy

At (ω) =

∫ t

0
as(ω) ds.

Defining
Dξt

dt
:= lim

ε→0
E
[
ξt+ε − ξt

ε

∣∣Ft

]
,

we have
Dξt

dt
= at
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Itô formula :

f (ξt ) = f (ξ0) +

∫ t

0
〈df (ξs), dNs〉+

∫ t

0
〈df (ξs), dAs〉+

1
2

∫ t

0
Hessf (dξs ⊗ dξs).

From this we see that ξt is a local martingale if and only if for all f ∈ C2(Rn),

f (ξt )− f (ξ0)−
1
2

∫ t

0
Hessf (dξs ⊗ dξs) is a real valued local martingale.

This property becomes a definition for manifold-valued martingales.

Definition

Let at ∈ Tξt M an adapted process. If for all f ∈ C2(M)

f (ξt )−f (ξ0)−
∫ t

0
〈df (ξs), as〉 ds−

1
2

∫ t

0
Hessf (dξs⊗dξs) is a real valued local martingale

then
Dξt

dt
= at .
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Let G be a Lie group with right invariant metric 〈·, ·〉 and right invariant connection ∇.
Let G := TeG be the Lie algebra of G.
Consider a countable family Hi , i ≥ 1, of elements of G , and u ∈ C1([0,T ],G ).
Consider the Stratonovich equation

dgt =
(∑

i≥1 Hi ◦ dW i
t −

1
2∇Hi Hi dt + u(t) dt

)
· gt

g0 = e

where the (W i
t ) are independent real valued Brownian motions. Itô formula writes

f (gt ) =f (g0) +
∑
i≥1

∫ t

0
〈df (gs),Hi dW i

s〉+

∫ t

0
〈df (gs), u(s)gs ds〉

+
1
2

∑
i≥1

∫ t

0
Hessf (Hi (gs),Hi (gs)) ds.

This implies that
Dgt

dt
= u(t)gt .

Particular case

If (Hi ) is an orthonormal basis, ∇Hi Hi = 0, ∇ is the Levi Civita connection associated
to the metric and u ≡ 0, then gt is a Brownian motion in G.
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On the space S (G) of G-valued semimartingales define

J(ξ) =
1
2
E

[∫ T

0

∥∥∥∥Dξ
dt

∥∥∥∥2
dt

]
.

Perturbation: for v ∈ C1([0,T ],G ) satisfying v(0) = v(T ) = 0 and ε > 0, let
eε,v (·) ∈ C1([0,T ],G) the flow generated by εv :{ d

dt eε,v (t) = εv̇(t) · eε,v (t)
eε,v (0) = e

Definition

We say that g ∈ S (G) is a critical point of J if for all v ∈ C1([0,T ],G ) satisfying
v(0) = v(T ) = 0,

dJ
dε

∣∣
ε=0gε,v = 0 where gε,v (t) = eε,v (t)g(t).

Marc Arnaudon Stochastic Euler-Poincaré reduction.



Deterministic framework
Stochastic framework

Semi-martingales in a Lie group
Stochastic Euler-Poincaré reduction
Group of volume preserving diffeomorphisms
Navier-Stokes and Camassa-Holm equations

On the space S (G) of G-valued semimartingales define

J(ξ) =
1
2
E

[∫ T

0

∥∥∥∥Dξ
dt

∥∥∥∥2
dt

]
.

Perturbation: for v ∈ C1([0,T ],G ) satisfying v(0) = v(T ) = 0 and ε > 0, let
eε,v (·) ∈ C1([0,T ],G) the flow generated by εv :{ d

dt eε,v (t) = εv̇(t) · eε,v (t)
eε,v (0) = e

Definition

We say that g ∈ S (G) is a critical point of J if for all v ∈ C1([0,T ],G ) satisfying
v(0) = v(T ) = 0,

dJ
dε

∣∣
ε=0gε,v = 0 where gε,v (t) = eε,v (t)g(t).

Marc Arnaudon Stochastic Euler-Poincaré reduction.



Deterministic framework
Stochastic framework

Semi-martingales in a Lie group
Stochastic Euler-Poincaré reduction
Group of volume preserving diffeomorphisms
Navier-Stokes and Camassa-Holm equations

On the space S (G) of G-valued semimartingales define

J(ξ) =
1
2
E

[∫ T

0

∥∥∥∥Dξ
dt

∥∥∥∥2
dt

]
.

Perturbation: for v ∈ C1([0,T ],G ) satisfying v(0) = v(T ) = 0 and ε > 0, let
eε,v (·) ∈ C1([0,T ],G) the flow generated by εv :{ d

dt eε,v (t) = εv̇(t) · eε,v (t)
eε,v (0) = e

Definition

We say that g ∈ S (G) is a critical point of J if for all v ∈ C1([0,T ],G ) satisfying
v(0) = v(T ) = 0,

dJ
dε

∣∣
ε=0gε,v = 0 where gε,v (t) = eε,v (t)g(t).

Marc Arnaudon Stochastic Euler-Poincaré reduction.



Deterministic framework
Stochastic framework

Semi-martingales in a Lie group
Stochastic Euler-Poincaré reduction
Group of volume preserving diffeomorphisms
Navier-Stokes and Camassa-Holm equations

Theorem

g is a critical point of J if and only if

du(t)
dt

= −ad∗ũ(t)u(t)− K (u(t))

with
ũ(t) = u(t)−

1
2

∑
i≥1

∇Hi Hi , 〈ad∗u v ,w〉 = 〈v , aduv〉

and K : G → G satisfies

〈K (u), v〉 = −
〈

u,
1
2

∑
i≥1

∇adv Hi Hi +∇Hi (adv (Hi ))

〉

Remark 1

If for all i ≥ 1, Hi = 0, or ∇uv = 0 for all u, v ∈ G , then K (u) = 0 and we get the
standard Euler-Poincaré equation.
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Proposition

If for all i ≥ 1, ∇Hi Hi = 0 then

K (u) = −
1
2

∑
i≥1

∇Hi · ∇Hi u + R(u,Hi )Hi .

In particular if (Hi ) is an o.n.b. of G then

K (u) = −
1
2
�u = −

1
2

∆u +
1
2

Ric]u the Hodge Laplacian.
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Let

Gs
v = {g : M → M volume preserving bijection, such that g, g−1 ∈ Hs}.

Assume s > 1 + dimM
2 . Then Gs

V is a C∞ smooth manifold. Lie algebra

G s
V = TeGs

V = {X : Hs(M,TM), π(X) = e, div(X) = 0}.
Notice that π(X) = e means that X is a vector field on M: X(x) ∈ Tx M. On G s

V
consider the two scalar products

〈X ,Y 〉0 =

∫
M
〈X(x),Y (x)〉 dx

and
〈X ,Y 〉1 =

∫
M
〈X(x),Y (x)〉 dx +

∫
M
〈∇X(x),∇Y (x)〉 dx .

The Levi Civita connection on Gs
V is given by ∇0V

X Y = Pe(∇0
X Y ) with ∇0 the Levi

Civita connection of 〈·, ·〉0 on Gs and Pe the orthogonal projection on G s
V :

Hs(TM) = G s
V ⊕ dHs+1(M).

One can find (Hi )i≥1 such that for all i ≥ 1, ∇Hi Hi = 0, div(Hi ) = 0, and∑
i≥1

H2
i f = ν∆f , f ∈ C2(M).
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Corollary

(1) g is a critical point of J〈·,·〉
0

if and only if u solves Navier-Stokes equation{
∂u
∂t = −∇uu + ν

2 ∆u −∇p
divu = 0

(2) Assume M = T2 the 2-dimensional torus. Then g is a critical point of J〈·,·〉
1

if and
only if u solves Camassa-Holm equation

∂u
∂t = −∇uv −

∑2
j=1∇vj uj + ν

2 ∆v −∇p
v = u −∆u

divu = 0

For the proof, use Itô formula and compute in different situations ad∗v (u) and K (u).
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