# Stochastic Euler-Poincaré reduction.

### Marc Arnaudon

Université de Bordeaux, France

GSI, École Polytechnique, 29 October 2015



- Arnaudon, Marc; Chen, Xin; Cruzeiro, Ana Bela; Stochastic Euler-Poincaré reduction. J. Math. Phys. 55 (2014), no. 8, 17pp
- Chen, Xin; Cruzeiro, Ana Bela; Ratiu, Tudor S.; Constrained and stochastic variational principles for dissipative equations with advected quantities. arXiv:1506.05024

## Deterministic framework

- Euler-Poincaré equations
- Diffeomorphism group on a compact Riemannian manifold
- Volume preserving diffeomorphism group
- Lagrangian paths
- Characterization of the geodesics on  $(G_V^s, \langle \cdot, \cdot \rangle^0)$
- Euler-Poincaré equation on G<sup>s</sup><sub>V</sub>

## 2 Stochastic framework

- Semi-martingales in a Lie group
- Stochastic Euler-Poincaré reduction
- Group of volume preserving diffeomorphisms
- Navier-Stokes and Camassa-Holm equations

 $\begin{array}{l} \textbf{Euler-Poincaré equations} \\ \text{Diffeomorphism group on a compact Riemannian manifold} \\ \text{Volume preserving diffeomorphism group} \\ \text{Lagrangian paths} \\ \text{Characterization of the geodesics on } \left(G_V^{S}, \left\langle \cdot, \cdot \right\rangle^{0}\right) \\ \text{Euler-Poincaré equation on } G_V^{S} \end{array}$ 

< □ > < 同 > < 回 > < 回 > .

## • Let *M* be a Riemannian manifold and $L: TM \times [0, T] \rightarrow \mathbb{R}$ a Lagrangian on *M*.

- Let  $q \in C^1_{a,b}([0,T];M) := \{q \in C^1([0,T],M), q(0) = a, q(T) = b\}.$
- The action functional  $\mathscr{C} : C^1_{a,b}([0,T];M) \to \mathbb{R}$  is defined by

$$\mathscr{C}(q(\cdot)) := \int_0^T L(q(t), \dot{q}(t), t) dt.$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$

 $\begin{array}{l} \textbf{Euler-Poincaré equations} \\ \text{Diffeomorphism group on a compact Riemannian manifold} \\ \text{Volume preserving diffeomorphism group} \\ \text{Lagrangian paths} \\ \text{Characterization of the geodesics on } \left(G_V^S, \left\langle \cdot, \cdot \right\rangle^0\right) \\ \text{Euler-Poincaré equation on } G_V^S \end{array} \right.$ 

- Let *M* be a Riemannian manifold and *L* : *TM* × [0, *T*] → ℝ a Lagrangian on *M*.
  Let *q* ∈ *C*<sup>1</sup><sub>*a*,*b*</sub>([0, *T*]; *M*) := {*q* ∈ *C*<sup>1</sup>([0, *T*], *M*), *q*(0) = *a*, *q*(*T*) = *b*}.
- The action functional  $\mathscr{C} : C^1_{a,b}([0,T];M) \to \mathbb{R}$  is defined by

$$\mathscr{C}(q(\cdot)) := \int_0^T L(q(t), \dot{q}(t), t) dt.$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$

 $\begin{array}{l} \textbf{Euler-Poincaré equations} \\ \text{Diffeomorphism group on a compact Riemannian manifold} \\ \text{Volume preserving diffeomorphism group} \\ \text{Lagrangian paths} \\ \text{Characterization of the geodesics on } \left(G_{V}^{s}, \left\langle \cdot, \cdot, \right\rangle^{0}\right) \\ \text{Euler-Poincaré equation on } G_{V}^{s} \end{array}$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *M* be a Riemannian manifold and  $L: TM \times [0, T] \rightarrow \mathbb{R}$  a Lagrangian on *M*.
- Let  $q \in C^1_{a,b}([0,T];M) := \{q \in C^1([0,T],M), q(0) = a, q(T) = b\}.$
- The action functional  $\mathscr{C} : C^1_{a,b}([0, T]; M) \to \mathbb{R}$  is defined by

$$\mathscr{C}(q(\cdot)) := \int_0^T L(q(t), \dot{q}(t), t) dt.$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$

 $\begin{array}{l} \textbf{Euler-Poincaré equations} \\ \text{Diffeomorphism group on a compact Riemannian manifold} \\ \text{Volume preserving diffeomorphism group} \\ \text{Lagrangian paths} \\ \text{Characterization of the geodesics on } \left(G_{V}^{s}, \left\langle \cdot, \cdot, \right\rangle^{0}\right) \\ \text{Euler-Poincaré equation on } G_{V}^{s} \end{array}$ 

- Let *M* be a Riemannian manifold and  $L: TM \times [0, T] \rightarrow \mathbb{R}$  a Lagrangian on *M*.
- Let  $q \in C^1_{a,b}([0,T];M) := \{q \in C^1([0,T],M), q(0) = a, q(T) = b\}.$
- The action functional  $\mathscr{C}: C^1_{a,b}([0,T];M) \to \mathbb{R}$  is defined by

$$\mathscr{C}(q(\cdot)) := \int_0^T L(q(t), \dot{q}(t), t) dt.$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$



• Suppose that the configuration space M = G is a Lie group and  $L: TG \rightarrow \mathbb{R}$  is a left invariant Lagrangian:

$$\ell(\xi) := L(e,\xi) = L(g,g \cdot \xi), \ \forall \xi \in T_eG, \ g \in G.$$

(here and in the sequel,  $g \cdot \xi = T_e L_g \xi$ )

• The action functional  $\mathscr{C}: C^1_{a,b}([0,T];G) \to \mathbb{R}$  is defined by

$$\mathscr{C}(g(\cdot)) := \int_0^T L(g(t), \dot{g}(t)) dt = \int_0^T \ell(\xi(t)) dt$$

where  $\xi(t) := g(t)^{-1} \cdot \dot{g}(t)$ .

● **[J.E. Marsden, T. Ratiu 1994] [J.E. Marsden, J. Scheurle 1993]**: *g*(·) is a critical point for *C* if and only if it satisfies the Euler-Poincaré equation on *T*<sup>\*</sup><sub>e</sub>*G* 

$$\frac{d}{dt}\left(\frac{d\ell}{d\xi}\right) - \operatorname{ad}_{\xi(t)}^*\left(\frac{d\ell}{d\xi}\right) = 0,$$

where  $\operatorname{ad}_{\mathcal{E}}^* : T_e^*G \to T_e^*G$  is the dual action of  $\operatorname{ad}_{\mathcal{E}} : T_eG \to T_eG$ :

$$\langle \operatorname{ad}_{\xi}^* \eta, \theta \rangle = \langle \eta, \operatorname{ad}_{\xi} \theta \rangle, \quad \eta \in T_{\theta}^* G, \quad \theta \in T_{\theta} G.$$



• Suppose that the configuration space M = G is a Lie group and  $L: TG \rightarrow \mathbb{R}$  is a left invariant Lagrangian:

$$\ell(\xi) := L(e,\xi) = L(g,g \cdot \xi), \ \forall \xi \in T_eG, \ g \in G.$$

(here and in the sequel,  $g \cdot \xi = T_e L_g \xi$ )

• The action functional  $\mathscr{C}: C^1_{a,b}([0,T];G) \to \mathbb{R}$  is defined by

$$\mathscr{C}(g(\cdot)) := \int_0^T L(g(t), \dot{g}(t)) dt = \int_0^T \ell(\xi(t)) dt,$$

where  $\xi(t) := g(t)^{-1} \cdot \dot{g}(t)$ .

● **[J.E. Marsden, T. Ratiu 1994] [J.E. Marsden, J. Scheurle 1993]**: *g*(·) is a critical point for *C* if and only if it satisfies the Euler-Poincaré equation on *T*<sup>\*</sup><sub>e</sub>*G* 

$$\frac{d}{dt}\left(\frac{d\ell}{d\xi}\right) - \operatorname{ad}_{\xi(t)}^*\left(\frac{d\ell}{d\xi}\right) = 0,$$

where  $\operatorname{ad}_{\mathcal{E}}^* : T_e^*G \to T_e^*G$  is the dual action of  $\operatorname{ad}_{\mathcal{E}} : T_eG \to T_eG$ :

$$\langle \operatorname{ad}_{\xi}^* \eta, \theta \rangle = \langle \eta, \operatorname{ad}_{\xi} \theta \rangle, \quad \eta \in T_{\theta}^* G, \quad \theta \in T_{\theta} G.$$



• Suppose that the configuration space M = G is a Lie group and  $L: TG \rightarrow \mathbb{R}$  is a left invariant Lagrangian:

$$\ell(\xi) := L(e,\xi) = L(g,g \cdot \xi), \ \forall \xi \in T_eG, \ g \in G.$$

(here and in the sequel,  $g \cdot \xi = T_e L_g \xi$ )

• The action functional  $\mathscr{C}: C^1_{a,b}([0,T];G) \to \mathbb{R}$  is defined by

$$\mathscr{C}(g(\cdot)) := \int_0^T L(g(t), \dot{g}(t)) dt = \int_0^T \ell(\xi(t)) dt,$$

where  $\xi(t) := g(t)^{-1} \cdot \dot{g}(t)$ .

• [J.E. Marsden, T. Ratiu 1994] [J.E. Marsden, J. Scheurle 1993]:  $g(\cdot)$  is a critical point for  $\mathscr{C}$  if and only if it satisfies the Euler-Poincaré equation on  $T_e^*G$ 

$$\frac{d}{dt}\left(\frac{d\ell}{d\xi}\right) - \operatorname{ad}_{\xi(t)}^{*}\left(\frac{d\ell}{d\xi}\right) = 0,$$

where  $\operatorname{ad}_{\xi}^*: T_e^*G \to T_e^*G$  is the dual action of  $\operatorname{ad}_{\xi}: T_eG \to T_eG$ :

$$\langle \operatorname{ad}_{\xi}^* \eta, \theta \rangle = \langle \eta, \operatorname{ad}_{\xi} \theta \rangle, \quad \eta \in T_{\theta}^* G, \quad \theta \in T_{\theta} G.$$

### • We will be interested in variations $\xi(\cdot)$ satisfying

# $\dot{\xi}(t)=\dot{ u}(t)+\operatorname{ad}_{\xi(t)} u(t) \hspace{0.1in} ext{for some} \hspace{0.1in} u\in C^{1}([0,T], \hspace{0.1in} T_{e}G),$

which is equivalent to the variation of  $g(\cdot)$  with the perturbation  $g^{\varepsilon}(t) = g(t)e_{\varepsilon,\nu}(t)$ , where  $e_{\varepsilon,\nu}(t)$  is the unique solution to the following ODE on G:

$$\begin{cases} \frac{d}{dt}e_{\varepsilon,\nu}(t) = \varepsilon e_{\varepsilon,\nu}(t) \cdot \dot{\nu}(t),\\ e_{\varepsilon,\nu}(0) = e. \end{cases}$$

< ロ > < 同 > < 三 > < 三 > -

• We will be interested in variations  $\xi(\cdot)$  satisfying

$$\dot{\xi}(t) = \dot{
u}(t) + \operatorname{ad}_{\xi(t)} 
u(t) \quad ext{for some} \quad 
u \in C^1([0, T], \ T_e G),$$

which is equivalent to the variation of  $g(\cdot)$  with the perturbation  $g^{\varepsilon}(t) = g(t)e_{\varepsilon,\nu}(t)$ , where  $e_{\varepsilon,\nu}(t)$  is the unique solution to the following ODE on G:

$$\begin{cases} \frac{d}{dt} \boldsymbol{e}_{\varepsilon,\nu}(t) = \varepsilon \boldsymbol{e}_{\varepsilon,\nu}(t) \cdot \dot{\nu}(t), \\ \boldsymbol{e}_{\varepsilon,\nu}(0) = \boldsymbol{e}. \end{cases}$$

Euler-Poincaré equations Diffeomorphism group on a compact Riemannian manifold Volume preserving diffeomorphism group Lagrangian paths Characterization of the geodesics on  $\left(G_{V}^{S}, \langle \cdot, \cdot \rangle^{0}\right)$ Euler-Poincaré equation on  $G_{V}^{S}$ 

< ロ > < 同 > < 回 > < 回 >

• Let M be a n-dimensional compact Riemannian manifold. We define

$$G^s := \left\{ g: M o M ext{ a bijection }, g, g^{-1} \in H^s(M,M) 
ight\},$$

where  $H^{s}(M, M)$  denotes the manifold of Sobolev maps of class  $s > 1 + \frac{\pi}{2}$  from *M* to itself.

- If  $s > 1 + \frac{n}{2}$  then  $G^s$  is a  $C^{\infty}$  Hilbert manifold.
- *G<sup>s</sup>* is a group under composition between maps, right translation is smooth, left translation and inversion are only continuous. *G<sup>s</sup>* is also a topological group (but not an infinite dimensional Lie group).

Euler-Poincaré equations Diffeomorphism group on a compact Riemannian manifold Volume preserving diffeomorphism group Lagrangian paths Characterization of the geodesics on  $\left(G_{V}^{S}, \langle \cdot, \cdot \rangle^{0}\right)$ Euler-Poincaré equation on  $G_{V}^{S}$ 

イロト イ団ト イヨト イヨ

• Let M be a n-dimensional compact Riemannian manifold. We define

$$G^s := \left\{ g: M o M ext{ a bijection }, g, g^{-1} \in H^s(M,M) 
ight\},$$

where  $H^{s}(M, M)$  denotes the manifold of Sobolev maps of class  $s > 1 + \frac{\pi}{2}$  from M to itself.

- If  $s > 1 + \frac{n}{2}$  then  $G^s$  is a  $C^{\infty}$  Hilbert manifold.
- *G<sup>s</sup>* is a group under composition between maps, right translation is smooth, left translation and inversion are only continuous. *G<sup>s</sup>* is also a topological group (but not an infinite dimensional Lie group).

Euler-Poincaré equations Diffeomorphism group on a compact Riemannian manifold Volume preserving diffeomorphism group Lagrangian paths Characterization of the geodesics on  $\left(G_{V}^{s}, \left\langle \cdot, \cdot \right\rangle^{0}\right)$ Euler-Poincaré equation on  $G_{V}^{s}$ 

• Let M be a n-dimensional compact Riemannian manifold. We define

$$G^{s}:=\left\{g:M
ightarrow M$$
 a bijection  $,g,g^{-1}\in H^{s}(M,M)
ight\},$ 

where  $H^{s}(M, M)$  denotes the manifold of Sobolev maps of class  $s > 1 + \frac{\pi}{2}$  from M to itself.

- If  $s > 1 + \frac{n}{2}$  then  $G^s$  is a  $C^{\infty}$  Hilbert manifold.
- *G<sup>s</sup>* is a group under composition between maps, right translation is smooth, left translation and inversion are only continuous. *G<sup>s</sup>* is also a topological group (but not an infinite dimensional Lie group).

Euler-Poincaré equations Diffeomorphism group on a compact Riemannian manifold Volume preserving diffeomorphism group Lagrangian paths Characterization of the geodesics on  $\left(G_V^S, \langle \cdot, \cdot \rangle^0\right)$ Euler-Poincaré equation on  $G_V^S$ 

• The tangent space  $T_{\eta}G^{s}$  at arbitrary  $\eta \in G^{s}$  is

 $T_{\eta}G^{s} = \left\{ U: M \to TM \text{ of class } H^{s}, \ U(m) \in T_{\eta(m)}M \right\}.$ 

• The Riemannian structure on *M* induces the weak  $L^2$ , or hydrodynamic, metric  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  given by

$$\langle U, V \rangle_{\eta}^{0} := \int_{M} \langle U_{\eta}(m), V_{\eta}(m) \rangle_{m} d\mu_{g}(m),$$

for any  $\eta \in G^s$ ,  $U, V \in T_{\eta}G^s$ . Here  $U_{\eta} := U \circ \eta^{-1} \in T_eG^s$  and  $\mu_g$  denotes the Riemannian volume asociated with (M, g).

• Obviously,  $\langle \cdot, \cdot \rangle^0$  is a right invariant metric on  $G^s$ .

Diffeomorphism group on a compact Riemannian manifold

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The tangent space  $T_n G^s$  at arbitrary  $\eta \in G^s$  is

$$T_{\eta}G^{s} = \left\{ U: M 
ightarrow TM ext{ of class } H^{s}, \ U(m) \in T_{\eta(m)}M 
ight\}.$$

• The Riemannian structure on M induces the weak  $L^2$ , or hydrodynamic, metric  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  given by

$$\langle U, V \rangle_{\eta}^{0} := \int_{M} \langle U_{\eta}(m), V_{\eta}(m) \rangle_{m} d\mu_{g}(m),$$

for any  $\eta \in G^s$ ,  $U, V \in T_n G^s$ . Here  $U_n := U \circ \eta^{-1} \in T_e G^s$  and  $\mu_q$  denotes the Riemannian volume associated with (M, g).

• Obviously,  $\langle \cdot, \cdot \rangle^0$  is a right invariant metric on  $G^s$ .

Euler-Poincaré equations Diffeomorphism group on a compact Riemannian manifold Volume preserving diffeomorphism group Lagrangian paths Characterization of the geodesics on  $\left(G_V^S, \langle \cdot, \cdot, \rangle^0\right)$ Euler-Poincaré equation on  $G_V^S$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The tangent space  $T_{\eta}G^{s}$  at arbitrary  $\eta \in G^{s}$  is

$$T_{\eta}G^{s} = \left\{ U: M 
ightarrow TM ext{ of class } H^{s}, \ U(m) \in T_{\eta(m)}M 
ight\}.$$

• The Riemannian structure on *M* induces the weak  $L^2$ , or hydrodynamic, metric  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  given by

$$\langle U, V \rangle_{\eta}^{0} := \int_{M} \langle U_{\eta}(m), V_{\eta}(m) \rangle_{m} d\mu_{g}(m),$$

for any  $\eta \in G^s$ ,  $U, V \in T_{\eta}G^s$ . Here  $U_{\eta} := U \circ \eta^{-1} \in T_eG^s$  and  $\mu_g$  denotes the Riemannian volume asociated with (M, g).

• Obviously,  $\langle \cdot, \cdot \rangle^0$  is a right invariant metric on  $G^s$ .



 Let 
 ∇ be the Levi-Civita connection associated with the Riemannian manifold (M, g). We define a right invariant connection 
 ∇<sup>0</sup> on G<sup>s</sup> by

$$\left(\nabla_{\tilde{X}}^{0}\tilde{Y}\right)(\eta):=\frac{\partial}{\partial t}\Big|_{t=0}\left(\tilde{Y}(\eta_{t})\circ\eta_{t}^{-1}\right)\circ\eta+\left(\nabla_{X_{\eta}}Y_{\eta}\right)\circ\eta,$$

where  $\tilde{X}, \tilde{Y} \in \mathscr{L}(G^s), X_{\eta} := \tilde{X} \circ \eta^{-1}, Y_{\eta} := \tilde{Y} \circ \eta^{-1} \in \mathscr{L}^s(M)$ , and  $\eta$  is a  $C^1$  curve in  $G^s$  such that  $\eta_0 = \eta$  and  $\frac{d}{dt}\Big|_{t=0} \eta_t = \tilde{X}(\eta)$ . Here  $\mathscr{L}(G^s)$  denotes the set of smooth vector fields on  $G^s$ .

•  $\nabla^0$  is the Levi-Civita connection associated to  $(G^s, \langle \cdot, \cdot \rangle^0)$ .

イロト イ団ト イヨト イヨト

 Let 
 ∇ be the Levi-Civita connection associated with the Riemannian manifold (M, g). We define a right invariant connection 
 ∇<sup>0</sup> on G<sup>s</sup> by

$$\left(\nabla_{\tilde{X}}^{0}\tilde{Y}\right)(\eta):=\frac{\partial}{\partial t}\Big|_{t=0}\left(\tilde{Y}(\eta_{t})\circ\eta_{t}^{-1}\right)\circ\eta+\left(\nabla_{X_{\eta}}Y_{\eta}\right)\circ\eta,$$

where  $\tilde{X}, \tilde{Y} \in \mathscr{L}(G^s), X_{\eta} := \tilde{X} \circ \eta^{-1}, Y_{\eta} := \tilde{Y} \circ \eta^{-1} \in \mathscr{L}^s(M)$ , and  $\eta$  is a  $C^1$  curve in  $G^s$  such that  $\eta_0 = \eta$  and  $\frac{d}{dt}\Big|_{t=0} \eta_t = \tilde{X}(\eta)$ . Here  $\mathscr{L}(G^s)$  denotes the set of smooth vector fields on  $G^s$ .

•  $\nabla^0$  is the Levi-Civita connection associated to  $(G^s, \langle \cdot, \cdot \rangle^0)$ .

< ロ > < 同 > < 回 > < 回 >



## $G_V^{s}:=\left\{g,g\in G^{s},\;g ext{ is volume preserving} ight\}.$

- $G_V^s$  is still a topological group.
- The tangent space  $T_e G_V^s$  is

$$\mathscr{G}_V^s = T_e G_V^s = \left\{ U, \ U \in T_e G^s, \ \operatorname{div}(U) = 0 \right\}.$$

• The  $L^2$ -metric  $\langle \cdot, \cdot \rangle^0$  and its Levi-Civita connection  $\nabla^{0,V}$  are defined on  $G_V^s$  by orthogonal projection. More precisely the Levi Civita connection on  $G_V^s$  is given by  $\nabla_X^{0,V} Y = P_{\theta}(\nabla_X^0 Y)$  with  $P_{\theta}$  the orthogonal projection on  $\mathscr{G}_V^s$ :

$$H^{s}(TM) = \mathscr{G}_{V}^{s} \oplus dH^{s+1}(M).$$



 $G_V^s := \left\{ g, g \in G^s, \; g \; ext{is volume preserving} 
ight\}.$ 

### • $G_V^s$ is still a topological group.

• The tangent space  $T_e G_V^s$  is

$$\mathscr{G}_V^s = T_e G_V^s = \left\{ U, \ U \in T_e G^s, \ \operatorname{div}(U) = 0 \right\}.$$

• The  $L^2$ -metric  $\langle \cdot, \cdot \rangle^0$  and its Levi-Civita connection  $\nabla^{0,V}$  are defined on  $G_V^s$  by orthogonal projection. More precisely the Levi Civita connection on  $G_V^s$  is given by  $\nabla_X^{0,V} Y = P_{\theta}(\nabla_X^0 Y)$  with  $P_{\theta}$  the orthogonal projection on  $\mathscr{G}_V^s$ :

$$H^{s}(TM) = \mathscr{G}_{V}^{s} \oplus dH^{s+1}(M).$$



 $G_V^s := \{g, g \in G^s, \ g \text{ is volume preserving}\}.$ 

- $G_V^s$  is still a topological group.
- The tangent space  $T_e G_V^s$  is

$$\mathscr{G}_V^s = T_e G_V^s = \left\{ U, \ U \in T_e G^s, \ \operatorname{div}(U) = 0 \right\}.$$

The L<sup>2</sup>-metric ⟨·, ·⟩<sup>0</sup> and its Levi-Civita connection ∇<sup>0, V</sup> are defined on G<sup>s</sup><sub>V</sub> by orthogonal projection. More precisely the Levi Civita connection on G<sup>s</sup><sub>V</sub> is given by ∇<sup>0, V</sup><sub>X</sub> Y = P<sub>θ</sub>(∇<sup>0</sup><sub>X</sub> Y) with P<sub>θ</sub> the orthogonal projection on 𝒢<sup>s</sup><sub>V</sub>:

$$H^{s}(TM) = \mathscr{G}^{s}_{V} \oplus dH^{s+1}(M).$$



 $G_V^s := \{g, g \in G^s, \ g \text{ is volume preserving}\}.$ 

- $G_V^s$  is still a topological group.
- The tangent space  $T_e G_V^s$  is

$$\mathscr{G}_V^s = T_e G_V^s = \left\{ U, \ U \in T_e G^s, \ \operatorname{div}(U) = 0 \right\}.$$

• The  $L^2$ -metric  $\langle \cdot, \cdot \rangle^0$  and its Levi-Civita connection  $\nabla^{0,V}$  are defined on  $G^s_V$  by orthogonal projection. More precisely the Levi Civita connection on  $G^s_V$  is given by  $\nabla^{0,V}_X Y = P_e(\nabla^0_X Y)$  with  $P_e$  the orthogonal projection on  $\mathscr{G}^s_V$ :

$$H^{s}(TM) = \mathscr{G}^{s}_{V} \oplus dH^{s+1}(M).$$



• Consider the ODE on M

$$\begin{cases} \frac{d}{dt} (g_t(x)) &= u(t, g_t(x)) \\ g_0(x) &= x. \end{cases}$$

Here  $u(t, \cdot) \in T_e G^s$  for every t > 0.

- For every fixed t > 0,  $g_t(\cdot) \in G^s(M)$ . So  $g \in C^1([0, T], G^s)$ .
- If div(u(t)) = 0 for every t then  $g \in C^1([0, T], G_V^s)$



• Consider the ODE on M

$$\begin{cases} \frac{d}{dt} (g_t(x)) &= u(t, g_t(x)) \\ g_0(x) &= x. \end{cases}$$

Here  $u(t, \cdot) \in T_e G^s$  for every t > 0.

• For every fixed t > 0,  $g_t(\cdot) \in G^s(M)$ . So  $g \in C^1([0, T], G^s)$ .

• If div(u(t)) = 0 for every t then  $g \in C^1([0, T], G_V^s)$ 



• Consider the ODE on M

$$\begin{cases} \frac{d}{dt} (g_t(x)) &= u(t, g_t(x)) \\ g_0(x) &= x. \end{cases}$$

Here  $u(t, \cdot) \in T_e G^s$  for every t > 0.

- For every fixed t > 0,  $g_t(\cdot) \in G^s(M)$ . So  $g \in C^1([0, T], G^s)$ .
- If  $\operatorname{div}(u(t)) = 0$  for every t then  $g \in C^1([0, T], G_V^s)$

< ロ > < 同 > < 回 > < 回 > < 回 > <



• [V.I. Arnold 1966] [D.G. Ebin, J.E. Marsden 1970] A Lagrangian path  $g \in C^2([0, T], G_V^s)$  satisfying the equation above is a geodesic on  $(G_V^s, \langle \cdot, \cdot \rangle^{0, V})$  (i.e.  $\nabla_{\dot{g}(t)}^{0, V} \dot{g}(t)$ ) if and only of the velocity field *u* satisfies the Euler equation for incompressible inviscid fluids

(E) 
$$\begin{cases} \frac{\partial u}{\partial t} = -\nabla_u u - \nabla p \\ \operatorname{div} u = 0 \end{cases}$$

• Notice that the term  $\nabla p$  corresponds to the use of  $\nabla^0$  instead of  $\nabla^{0,V}$ : the first system rewrites as

$$\begin{array}{ll} \frac{\partial u}{\partial t} &= -\nabla_u^{0, V} u\\ \operatorname{div} u &= 0 \end{array}$$



 [V.I. Arnold 1966] [D.G. Ebin, J.E. Marsden 1970] A Lagrangian path *g* ∈ C<sup>2</sup>([0, *T*], G<sup>s</sup><sub>V</sub>) satisfying the equation above is a geodesic on (G<sup>s</sup><sub>V</sub>, ⟨·, ·⟩<sup>0, V</sup>) (i.e. ∇<sup>0,V</sup><sub>g(t)</sub>g(t)) if and only of the velocity field *u* satisfies the Euler equation for incompressible inviscid fluids

(E) 
$$\begin{cases} \frac{\partial u}{\partial t} = -\nabla_u u - \nabla p \\ \operatorname{div} u = 0 \end{cases}$$

 Notice that the term ∇p corresponds to the use of ∇<sup>0</sup> instead of ∇<sup>0, V</sup>: the first system rewrites as

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u^{0, V} u\\ \operatorname{div} u &= 0 \end{cases}$$



• If we take  $\ell : T_e G_V^s \to \mathbb{R}$  as

$$\ell(X) := \langle X, X \rangle, \quad X \in T_e G_V^s,$$

and define the action functional  $\mathscr{C}: C^1_{e,e}([0,T],G^s_V) \to \mathbb{R}$  by

$$\mathscr{C}(g(\cdot)) := \int_0^T \ell\left(\dot{g}(t) \cdot g(t)^{-1}\right) dt,$$

then a Lagrangian path  $g \in C^2([0, T], G^s_V)$  integral path of u is a critical point of  $\mathscr{C}$  if and only if u satisfies the Euler equation (E). [J.E. Marsden, T. Ratiu 1994] [J.E. Marsden, J. Scheurle 1993]

• [S. Shkoller 1998] If we take  $\ell : T_e G_V^s \to \mathbb{R}$  as the  $H^1$  metric

$$\ell(X) := \int_{M} \langle X, X \rangle_{m} \, d\mu_{g}(m) + \alpha^{2} \int_{M} \langle \nabla X, \nabla X \rangle_{m} \, d\mu_{g}(m), \ X \in T_{e}G_{V}^{s},$$

and define the action functional  $\mathscr{C} : C^1_{\theta, \theta}([0, T], G^s_V) \to \mathbb{R}$  in the same way as before, then a Lagrangian path  $g \in C^2([0, T], G^s_V)$  integral path of u is a critical point of  $\mathscr{C}$  if and only if u satisfies the Camassa-Holm equation

$$\begin{cases} \frac{\partial \nu}{\partial t} + u \cdot \nu + \alpha^2 (\nabla u)^* \cdot \Delta \nu &= \nabla p, \\ \nu &= (1 + \alpha^2 \Delta) u, \\ \operatorname{div}(u) &= 0. \end{cases}$$

< ロ > < 同 > < 回 > < 回 >

## Aim: to establish a stochastic Euler-Poincaré reduction theorem in a general Lie group.

To apply it to volume preserving diffeomorphisms of a compact symmetric space. Stochastic term will correspond for Euler equation to introducing viscosity.

Marc Arnaudon Stochastic Euler-Poincaré reduction.

Aim: to establish a stochastic Euler-Poincaré reduction theorem in a general Lie group. To apply it to volume preserving diffeomorphisms of a compact symmetric space. Stochastic term will correspond for Euler equation to introducing viscosity.

Aim: to establish a stochastic Euler-Poincaré reduction theorem in a general Lie group. To apply it to volume preserving diffeomorphisms of a compact symmetric space. Stochastic term will correspond for Euler equation to introducing viscosity.

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

An  $\mathbb{R}^n$ -valued semimartingale  $\xi_t$  has a decomposition

$$\xi_t(\omega) = N_t(\omega) + A_t(\omega)$$

where  $(N_t)$  is a local martingale and  $(A_t)$  has finite variation. If  $(N_t)$  is a martingale, then

 $\mathbb{E}[N_t|\mathscr{F}_s]=N_s, \quad t\geq s.$ 

We are interested in semimartingales which furthermore satisfy

$$A_t(\omega) = \int_0^t a_s(\omega) \, ds$$

Defining

$$\frac{D\xi_t}{dt} := \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{\xi_{t+\varepsilon} - \xi_t}{\varepsilon} | \mathscr{F}_t\right],$$

we have  $\frac{D\xi_t}{dt} = a_t$ 

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

An  $\mathbb{R}^n$ -valued semimartingale  $\xi_t$  has a decomposition

$$\xi_t(\omega) = N_t(\omega) + A_t(\omega)$$

where  $(N_t)$  is a local martingale and  $(A_t)$  has finite variation. If  $(N_t)$  is a martingale, then

$$\mathbb{E}[N_t|\mathscr{F}_s] = N_s, \quad t \ge s.$$

We are interested in semimartingales which furthermore satisfy

$$A_t(\omega) = \int_0^t a_s(\omega) \, ds$$

Defining

$$\frac{D\xi_t}{dt} := \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{\xi_{t+\varepsilon} - \xi_t}{\varepsilon} | \mathscr{F}_t\right],$$

we have  $\frac{D\xi_t}{dt} = a_t$ 

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

An  $\mathbb{R}^n$ -valued semimartingale  $\xi_t$  has a decomposition

$$\xi_t(\omega) = N_t(\omega) + A_t(\omega)$$

where  $(N_t)$  is a local martingale and  $(A_t)$  has finite variation. If  $(N_t)$  is a martingale, then

$$\mathbb{E}[N_t|\mathscr{F}_s] = N_s, \quad t \ge s.$$

We are interested in semimartingales which furthermore satisfy

$$A_t(\omega) = \int_0^t a_s(\omega) \, ds.$$

Defining

$$\frac{D\xi_t}{dt} := \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{\xi_{t+\varepsilon} - \xi_t}{\varepsilon} | \mathscr{F}_t\right],$$

we have  $\frac{D\xi_t}{dt} = a_t$ 

Itô formula :

$$f(\xi_t) = f(\xi_0) + \int_0^t \langle df(\xi_s), dN_s \rangle + \int_0^t \langle df(\xi_s), dA_s \rangle + \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s).$$

From this we see that  $\xi_t$  is a local martingale if and only if for all  $f \in C^2(\mathbb{R}^n)$ ,

$$f(\xi_t) - f(\xi_0) - \frac{1}{2} \int_0^t \text{Hess}f(d\xi_s \otimes d\xi_s)$$
 is a real valued local martingale.

This property becomes a definition for manifold-valued martingales.

#### Definition

Let 
$$a_t \in T_{\xi_t} M$$
 an adapted process. If for all  $f \in C^2(M)$   
 $f(\xi_t) - f(\xi_0) - \int_0^t \langle df(\xi_s), a_s \rangle \, ds - \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s)$  is a real valued local martingale  
then  $\frac{D\xi_t}{dt} = a_t$ .

イロト イヨト イヨト イヨト

Itô formula :

$$f(\xi_t) = f(\xi_0) + \int_0^t \langle df(\xi_s), dN_s \rangle + \int_0^t \langle df(\xi_s), dA_s \rangle + \frac{1}{2} \int_0^t \text{Hess} f(d\xi_s \otimes d\xi_s).$$

From this we see that  $\xi_t$  is a local martingale if and only if for all  $f \in C^2(\mathbb{R}^n)$ ,

$$f(\xi_t) - f(\xi_0) - \frac{1}{2} \int_0^t \text{Hess} f(d\xi_s \otimes d\xi_s)$$
 is a real valued local martingale.

This property becomes a definition for manifold-valued martingales.

#### Definition

Let  $a_t \in T_{\xi_t} M$  an adapted process. If for all  $f \in C^2(M)$  $f(\xi_t) - f(\xi_0) - \int_0^t \langle df(\xi_s), a_s \rangle \, ds - \frac{1}{2} \int_0^t \text{Hess} f(d\xi_s \otimes d\xi_s)$  is a real valued local martinga then  $\frac{D\xi_t}{dt} = a_t$ .

< ロ > < 同 > < 回 > < 回 >

Itô formula :

$$f(\xi_t) = f(\xi_0) + \int_0^t \langle df(\xi_s), dN_s \rangle + \int_0^t \langle df(\xi_s), dA_s \rangle + \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s).$$

From this we see that  $\xi_t$  is a local martingale if and only if for all  $f \in C^2(\mathbb{R}^n)$ ,

$$f(\xi_t) - f(\xi_0) - \frac{1}{2} \int_0^t \text{Hess} f(d\xi_s \otimes d\xi_s)$$
 is a real valued local martingale.

This property becomes a definition for manifold-valued martingales.

#### Definition

Let 
$$a_t \in T_{\xi_t} M$$
 an adapted process. If for all  $f \in C^2(M)$   
 $f(\xi_t) - f(\xi_0) - \int_0^t \langle df(\xi_s), a_s \rangle \, ds - \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s)$  is a real valued local martingale  
then  $\frac{D\xi_t}{dt} = a_t$ .

Itô formula :

$$f(\xi_t) = f(\xi_0) + \int_0^t \langle df(\xi_s), dN_s \rangle + \int_0^t \langle df(\xi_s), dA_s \rangle + \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s).$$

From this we see that  $\xi_t$  is a local martingale if and only if for all  $f \in C^2(\mathbb{R}^n)$ ,

$$f(\xi_t) - f(\xi_0) - \frac{1}{2} \int_0^t \text{Hess} f(d\xi_s \otimes d\xi_s)$$
 is a real valued local martingale.

This property becomes a definition for manifold-valued martingales.

### Definition

Let  $a_t \in T_{\xi_t} M$  an adapted process. If for all  $f \in C^2(M)$ 

 $f(\xi_t) - f(\xi_0) - \int_0^t \langle df(\xi_s), a_s \rangle \, ds - \frac{1}{2} \int_0^t \operatorname{Hess} f(d\xi_s \otimes d\xi_s)$  is a real valued local martingale

then  $\frac{D\xi_t}{dt} = a_t$ .

< ロ > < 同 > < 回 > < 回 >

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

Let *G* be a Lie group with right invariant metric  $\langle \cdot, \cdot \rangle$  and right invariant connection  $\nabla$ . Let  $\mathscr{G} := T_e G$  be the Lie algebra of *G*.

Consider a countable family  $H_i$ ,  $i \ge 1$ , of elements of  $\mathscr{G}$ , and  $u \in C^1([0, T], \mathscr{G})$ . Consider the Stratonovich equation

$$dg_t = \left(\sum_{i \ge 1} H_i \circ dW_t^i - \frac{1}{2} \nabla_{H_i} H_i \, dt + u(t) \, dt\right) \cdot g_t$$
  
$$g_0 = e$$

where the  $(W_t^i)$  are independent real valued Brownian motions. Itô formula writes

$$\begin{split} f(g_t) = & f(g_0) + \sum_{i \ge 1} \int_0^t \langle df(g_s), H_i dW_s^i \rangle + \int_0^t \langle df(g_s), u(s)g_s \, ds \rangle \\ & + \frac{1}{2} \sum_{i \ge 1} \int_0^t \operatorname{Hess} f(H_i(g_s), H_i(g_s)) \, ds. \end{split}$$

This implies that  $\frac{Dg_t}{dt} = u(t)g_t$ 

#### Particular case

If  $(H_i)$  is an orthonormal basis,  $\nabla_{H_i}H_i = 0$ ,  $\nabla$  is the Levi Civita connection associated to the metric and  $u \equiv 0$ , then  $g_t$  is a Brownian motion in G.

Let *G* be a Lie group with right invariant metric  $\langle \cdot, \cdot \rangle$  and right invariant connection  $\nabla$ . Let  $\mathscr{G} := T_e G$  be the Lie algebra of *G*. Consider a countable family  $H_i$ ,  $i \ge 1$ , of elements of  $\mathscr{G}$ , and  $u \in C^1([0, T], \mathscr{G})$ .

Consider the Stratonovich equation

$$\begin{aligned} dg_t &= \left( \sum_{i \geq 1} H_i \circ dW_t^i - \frac{1}{2} \nabla_{H_i} H_i \, dt + u(t) \, dt \right) \cdot g_t \\ g_0 &= e \end{aligned}$$

where the  $(W_t^i)$  are independent real valued Brownian motions. Itô formula writes

$$\begin{split} f(g_t) = &f(g_0) + \sum_{i \ge 1} \int_0^t \langle df(g_s), H_i dW_s^i \rangle + \int_0^t \langle df(g_s), u(s)g_s \, ds \rangle \\ &+ \frac{1}{2} \sum_{i \ge 1} \int_0^t \operatorname{Hess} f(H_i(g_s), H_i(g_s)) \, ds. \end{split}$$

This implies that  $rac{Dg_t}{dt} = u(t)g_t$ 

#### Particular case

If ( $H_i$ ) is an orthonormal basis,  $\nabla_{H_i}H_i = 0$ ,  $\nabla$  is the Levi Civita connection associated to the metric and  $u \equiv 0$ , then  $g_t$  is a Brownian motion in G.

Let *G* be a Lie group with right invariant metric  $\langle \cdot, \cdot \rangle$  and right invariant connection  $\nabla$ . Let  $\mathscr{G} := T_{\theta}G$  be the Lie algebra of *G*.

Consider a countable family  $H_i$ ,  $i \ge 1$ , of elements of  $\mathscr{G}$ , and  $u \in C^1([0, T], \mathscr{G})$ . Consider the Stratonovich equation

$$dg_t = \left(\sum_{i\geq 1} H_i \circ dW_t^i - \frac{1}{2} \nabla_{H_i} H_i \, dt + u(t) \, dt\right) \cdot g_t$$
  
$$g_0 = e$$

where the  $(W_t^i)$  are independent real valued Brownian motions. Itô formula writes

$$f(g_t) = f(g_0) + \sum_{i \ge 1} \int_0^t \langle df(g_s), H_i dW_s^i \rangle + \int_0^t \langle df(g_s), u(s)g_s ds \rangle + \frac{1}{2} \sum_{i \ge 1} \int_0^t \operatorname{Hess} f(H_i(g_s), H_i(g_s)) ds.$$

This implies that  $\frac{Dg_t}{dt} = u(t)g_t$ .

### Particular case

If (*H<sub>i</sub>*) is an orthonormal basis,  $\nabla_{H_i}H_i = 0$ ,  $\nabla$  is the Levi Civita connection associated to the metric and  $u \equiv 0$ , then  $g_t$  is a Brownian motion in *G*.

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

On the space  $\mathcal{S}(G)$  of G-valued semimartingales define

$$J(\xi) = \frac{1}{2} \mathbb{E} \left[ \int_0^T \left\| \frac{D\xi}{dt} \right\|^2 dt \right].$$

**Perturbation:** for  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0 and  $\varepsilon > 0$ , let  $e_{\varepsilon, v}(\cdot) \in C^1([0, T], G)$  the flow generated by  $\varepsilon v$ :

$$\begin{cases} \frac{d}{dt} e_{\varepsilon,v}(t) &= \varepsilon \dot{v}(t) \cdot e_{\varepsilon,v}(t) \\ e_{\varepsilon,v}(0) &= e \end{cases}$$

#### Definition

We say that  $g \in \mathscr{S}(G)$  is a critical point of J if for all  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0,

$$rac{dJ}{darepsilon}igert_{arepsilon=0}g_{arepsilon,v}=0$$
 where  $g_{arepsilon,v}(t)=e_{arepsilon,v}(t)g(t).$ 

On the space  $\mathscr{S}(G)$  of G-valued semimartingales define

$$J(\xi) = \frac{1}{2} \mathbb{E} \left[ \int_0^T \left\| \frac{D\xi}{dt} \right\|^2 dt \right].$$

**Perturbation:** for  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0 and  $\varepsilon > 0$ , let  $e_{\varepsilon, v}(\cdot) \in C^1([0, T], G)$  the flow generated by  $\varepsilon v$ :

$$\begin{cases} \frac{d}{dt} \boldsymbol{e}_{\varepsilon,v}(t) &= \varepsilon \dot{\boldsymbol{v}}(t) \cdot \boldsymbol{e}_{\varepsilon,v}(t) \\ \boldsymbol{e}_{\varepsilon,v}(0) &= \boldsymbol{e} \end{cases}$$

#### Definition

We say that  $g \in \mathscr{S}(G)$  is a critical point of J if for all  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0,

$$\frac{dJ}{d\varepsilon}|_{\varepsilon=0}g_{\varepsilon,v}=0$$
 where  $g_{\varepsilon,v}(t)=e_{\varepsilon,v}(t)g(t).$ 

On the space  $\mathscr{S}(G)$  of G-valued semimartingales define

$$J(\xi) = \frac{1}{2} \mathbb{E} \left[ \int_0^T \left\| \frac{D\xi}{dt} \right\|^2 dt \right].$$

**Perturbation:** for  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0 and  $\varepsilon > 0$ , let  $e_{\varepsilon, v}(\cdot) \in C^1([0, T], G)$  the flow generated by  $\varepsilon v$ :

$$\begin{cases} \frac{d}{dt} \boldsymbol{e}_{\varepsilon, v}(t) = \varepsilon \dot{\boldsymbol{v}}(t) \cdot \boldsymbol{e}_{\varepsilon, v}(t) \\ \boldsymbol{e}_{\varepsilon, v}(0) = \boldsymbol{e} \end{cases}$$

### Definition

We say that  $g \in \mathscr{S}(G)$  is a critical point of J if for all  $v \in C^1([0, T], \mathscr{G})$  satisfying v(0) = v(T) = 0,

$$rac{dJ}{darepsilon}igert_{arepsilon=0}g_{arepsilon,
u}=0 ext{ where } g_{arepsilon,
u}(t)=e_{arepsilon,
u}(t)g(t).$$

< ロ > < 同 > < 回 > < 回 >

С

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

## Theorem

g is a critical point of J if and only if

$$\frac{du(t)}{dt} = -\mathrm{ad}^*_{\tilde{u}(t)}u(t) - K(u(t))$$

with

$$\tilde{u}(t) = u(t) - \frac{1}{2} \sum_{i \ge 1} \nabla_{H_i} H_i, \quad \langle \operatorname{ad}_u^* v, w \rangle = \langle v, \operatorname{ad}_u v \rangle$$

and  $K : \mathscr{G} \to \mathscr{G}$  satisfies

$$\langle \mathcal{K}(u), v \rangle = -\left\langle u, \frac{1}{2} \sum_{i \geq 1} \nabla_{\mathrm{ad}_{V}H_{i}}H_{i} + \nabla_{H_{i}}\left(\mathrm{ad}_{v}(H_{i})\right) \right\rangle$$

#### Remark 1

If for all  $i \ge 1$ ,  $H_i = 0$ , or  $\nabla_u v = 0$  for all  $u, v \in \mathcal{G}$ , then K(u) = 0 and we get the standard Euler-Poincaré equation.

<ロ> <問> <問> < 回> < 回> 、

С

Semi-martingales in a Lie group Stochastic Euler-Poincaré reduction Group of volume preserving diffeomorphisms Navier-Stokes and Camassa-Holm equations

### Theorem

g is a critical point of J if and only if

$$\frac{du(t)}{dt} = -\mathrm{ad}^*_{\tilde{u}(t)}u(t) - K(u(t))$$

with

$$\tilde{u}(t) = u(t) - \frac{1}{2} \sum_{i \ge 1} \nabla_{H_i} H_i, \quad \langle \operatorname{ad}_u^* v, w \rangle = \langle v, \operatorname{ad}_u v \rangle$$

and  $K : \mathscr{G} \to \mathscr{G}$  satisfies

$$\langle \mathcal{K}(u), v \rangle = -\left\langle u, \frac{1}{2} \sum_{i \geq 1} \nabla_{\mathrm{ad}_{V}H_{i}}H_{i} + \nabla_{H_{i}}\left(\mathrm{ad}_{v}(H_{i})\right) \right\rangle$$

### Remark 1

If for all  $i \ge 1$ ,  $H_i = 0$ , or  $\nabla_u v = 0$  for all  $u, v \in \mathcal{G}$ , then K(u) = 0 and we get the standard Euler-Poincaré equation.

・ロト ・回ト ・ヨト ・ヨト

э

## Proposition

If for all  $i \geq 1$ ,  $\nabla_{H_i} H_i = 0$  then

$$K(u) = -\frac{1}{2}\sum_{i\geq 1} \nabla_{H_i} \cdot \nabla_{H_i} u + R(u, H_i)H_i.$$

In particular if  $(H_i)$  is an o.n.b. of  $\mathcal{G}$  then

$$\mathcal{K}(u) = -rac{1}{2}\Box u = -rac{1}{2}\Delta u + rac{1}{2}\mathrm{Ric}^{\sharp}u$$
 the Hodge Laplacian.

< ロ > < 同 > < 三 > < 三 > 、

Let

$$G_v^s = \{g: M \to M \text{ volume preserving bijection, such that } g, g^{-1} \in H^s\}.$$

Assume  $s > 1 + \frac{\dim M}{2}$ . Then  $G_V^s$  is a  $C^\infty$  smooth manifold. Lie algebra

$$\mathscr{G}_V^s = T_e G_V^s = \{X : H^s(M, TM), \pi(X) = e, \operatorname{div}(X) = 0\}.$$

Notice that  $\pi(X) = e$  means that X is a vector field on M:  $X(x) \in T_x M$ . On  $\mathscr{G}_V^s$  consider the two scalar products

$$\langle X, Y \rangle^0 = \int_M \langle X(x), Y(x) \rangle \, dx$$

and

$$\langle X, Y \rangle^1 = \int_M \langle X(x), Y(x) \rangle \, dx + \int_M \langle \nabla X(x), \nabla Y(x) \rangle \, dx.$$

The Levi Civita connection on  $G_V^s$  is given by  $\nabla_X^{0V}Y = P_e(\nabla_X^0Y)$  with  $\nabla^0$  the Levi Civita connection of  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  and  $P_e$  the orthogonal projection on  $\mathscr{G}_V^s$ :

 $H^{s}(TM) = \mathscr{G}^{s}_{V} \oplus dH^{s+1}(M).$ 

One can find  $(H_i)_{i\geq 1}$  such that for all  $i\geq 1$ ,  $\nabla_{H_i}H_i=0$ ,  $\operatorname{div}(H_i)=0$ , and

$$\sum_{i\geq 1} H_i^2 f = \nu \Delta f, \quad f \in C^2(M).$$

Let

$$G_v^s = \{g: M \to M \text{ volume preserving bijection, such that } g, g^{-1} \in H^s\}.$$

Assume  $s > 1 + \frac{\dim M}{2}$ . Then  $G_V^s$  is a  $C^\infty$  smooth manifold. Lie algebra

$$\mathscr{G}_V^s = T_e G_V^s = \{X : H^s(M, TM), \pi(X) = e, \operatorname{div}(X) = 0\}.$$

Notice that  $\pi(X) = e$  means that X is a vector field on M:  $X(x) \in T_x M$ . On  $\mathscr{G}_V^s$  consider the two scalar products

$$\langle X, Y \rangle^0 = \int_M \langle X(x), Y(x) \rangle \, dx$$

and

$$\langle X, Y \rangle^1 = \int_M \langle X(x), Y(x) \rangle \, dx + \int_M \langle \nabla X(x), \nabla Y(x) \rangle \, dx.$$

The Levi Civita connection on  $G_V^s$  is given by  $\nabla_X^{0V} Y = P_e(\nabla_X^0 Y)$  with  $\nabla^0$  the Levi Civita connection of  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  and  $P_e$  the orthogonal projection on  $\mathscr{G}_V^s$ :

$$H^{s}(TM) = \mathscr{G}^{s}_{V} \oplus dH^{s+1}(M).$$

One can find  $(H_i)_{i>1}$  such that for all  $i \ge 1$ ,  $\nabla_{H_i} H_i = 0$ , div $(H_i) = 0$ , and

$$\sum_{i\geq 1}H_i^2f=\nu\Delta f,\quad f\in C^2(M).$$

Let

$$G_v^s = \{g: M \to M \text{ volume preserving bijection, such that } g, g^{-1} \in H^s\}.$$

Assume  $s > 1 + \frac{\dim M}{2}$ . Then  $G_V^s$  is a  $C^\infty$  smooth manifold. Lie algebra

$$\mathscr{G}_V^s = T_e G_V^s = \{X : H^s(M, TM), \pi(X) = e, \operatorname{div}(X) = 0\}.$$

Notice that  $\pi(X) = e$  means that X is a vector field on M:  $X(x) \in T_x M$ . On  $\mathscr{G}_V^s$  consider the two scalar products

$$\langle X, Y \rangle^0 = \int_M \langle X(x), Y(x) \rangle \, dx$$

and

$$\langle X, Y \rangle^1 = \int_M \langle X(x), Y(x) \rangle \, dx + \int_M \langle \nabla X(x), \nabla Y(x) \rangle \, dx.$$

The Levi Civita connection on  $G_V^s$  is given by  $\nabla_X^{0V} Y = P_e(\nabla_X^0 Y)$  with  $\nabla^0$  the Levi Civita connection of  $\langle \cdot, \cdot \rangle^0$  on  $G^s$  and  $P_e$  the orthogonal projection on  $\mathscr{G}_V^s$ :

$$H^{s}(TM) = \mathscr{G}^{s}_{V} \oplus dH^{s+1}(M).$$

One can find  $(H_i)_{i\geq 1}$  such that for all  $i\geq 1$ ,  $\nabla_{H_i}H_i=0$ ,  $\operatorname{div}(H_i)=0$ , and

$$\sum_{i\geq 1}H_i^2f=\nu\Delta f,\quad f\in C^2(M).$$

### Corollary

(1) g is a critical point of  $J^{\langle \cdot, \cdot \rangle^0}$  if and only if u solves Navier-Stokes equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u u + \frac{\nu}{2} \Delta u - \nabla p \\ \operatorname{div} u &= 0 \end{cases}$$

(2) Assume  $M = \mathbb{T}^2$  the 2-dimensional torus. Then g is a critical point of  $J^{\langle \cdot, \cdot \rangle^1}$  if and only if u solves Camassa-Holm equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u v - \sum_{j=1}^2 \nabla_{v_j} u_j + \frac{\nu}{2} \Delta v - \nabla p \\ v &= u - \Delta u \\ \operatorname{div} u &= 0 \end{cases}$$

For the proof, use Itô formula and compute in different situations  $ad_v^*(u)$  and K(u).

## Corollary

(1) g is a critical point of  $J^{\langle \cdot, \cdot \rangle^0}$  if and only if u solves Navier-Stokes equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u u + \frac{\nu}{2} \Delta u - \nabla p \\ \operatorname{div} u &= 0 \end{cases}$$

(2) Assume  $M = \mathbb{T}^2$  the 2-dimensional torus. Then *g* is a critical point of  $J^{\langle \cdot, \cdot \rangle^1}$  if and only if *u* solves Camassa-Holm equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u v - \sum_{j=1}^2 \nabla_{v_j} u_j + \frac{\nu}{2} \Delta v - \nabla p \\ v &= u - \Delta u \\ \operatorname{div} u &= 0 \end{cases}$$

For the proof, use Itô formula and compute in different situations  $ad_v^*(u)$  and K(u).

< ロ > < 同 > < 回 > < 回 >

## Corollary

(1) g is a critical point of  $J^{\langle \cdot, \cdot \rangle^0}$  if and only if u solves Navier-Stokes equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u u + \frac{\nu}{2} \Delta u - \nabla p \\ \operatorname{div} u &= 0 \end{cases}$$

(2) Assume  $M = \mathbb{T}^2$  the 2-dimensional torus. Then *g* is a critical point of  $J^{\langle \cdot, \cdot \rangle^1}$  if and only if *u* solves Camassa-Holm equation

$$\begin{cases} \frac{\partial u}{\partial t} &= -\nabla_u v - \sum_{j=1}^2 \nabla_{v_j} u_j + \frac{\nu}{2} \Delta v - \nabla p \\ v &= u - \Delta u \\ \operatorname{div} u &= 0 \end{cases}$$

For the proof, use Itô formula and compute in different situations  $ad_v^*(u)$  and K(u).

< ロ > < 同 > < 回 > < 回 >