Statistics, Information and Topology

Co-chairs of the session:

Michel N'Guiffo Boyom: Université Toulouse Pierre Baudot: Median (link)

This session will focus on the advances of information theory, probability and statistics in Algebraic Topology (see [1-56] bellow). The field is currently knowing an impressive development, both on the side of the categorical, homotopical, or topos foundations of probability theorie and statistics, and of the information functions characterisation in cohomology and homotopy theory.

Bliographicical references: (to be completed)

[1] Cencov, N.N. Statistical Decision Rules and Optimal Inference. Translations of Mathematical Monographs. 1982.
[2] Ay, N. and Jost, J. and Lê, H.V. and Schwachhöfer, L. Information geometry and sufficient statistics. Probability Theory and Related Fields 2015 PDF
[3] Cathelineau, J. Sur l’homologie de sl2 a coefficients dans l’action adjointe, Math. Scand., 63, 51-86, 1988. PDF
[4] Kontsevitch, M. The 1+1/2 logarithm. Unpublished note, Reproduced in Elbaz-Vincent & Gangl, 2002, 1995 PDF
[5] Elbaz-Vincent, P., Gangl, H. On poly(ana)logs I., Compositio Mathematica, 130(2), 161-214. 2002. PDF
[6] Tomasic, I., Independence, measure and pseudofinite fields. Selecta Mathematica, 12 271-306. Archiv. 2006.
[7] Connes, A., Consani, C., Characteristic 1, entropy and the absolute point. preprint arXiv:0911.3537v1. 2009.
[8] Marcolli, M. & Thorngren, R. Thermodynamic Semirings, arXiv 10.4171 / JNCG/159, Vol. abs/1108.2874, 2011.
[9] Abramsky, S., Brandenburger, A., The Sheaf-theoretic structure of non-locality and contextuality, New Journal of Physics, 13 (2011). PDF
[10] Gromov, M. In a Search for a Structure, Part 1: On Entropy, unpublished manuscript, 2013. PDF
[11] McMullen, C.T., Entropy and the clique polynomial, 2013. PDF
[12] Marcolli, M. & Tedeschi, R. Entropy algebras and Birkhoff factorization, arXiv, Vol. abs/1108.2874, 2014.
[13] Doering, A., Isham, C.J., Classical and Quantum Probabilities as Truth Values, arXiv:1102.2213, 2011 PDF
[14] Baez, J.; Fritz, T. & Leinster, T. A Characterization of Entropy in Terms of Information Loss Entropy, 13, 1945-1957, 2011. PDF
[15] Baez J. C.; Fritz, T. A Bayesian characterization of relative entropy. Theory and Applications of Categories, Vol. 29, No. 16, p. 422-456. 2014. PDF
[16] Drummond-Cole, G.-C., Park., J.-S., Terrila, J., Homotopy probability theory I. J. Homotopy Relat. Struct. November 2013. PDF
[17] Drummond-Cole, G.-C., Park., J.-S., Terrila, J., Homotopy probability theory II. J. Homotopy Relat. Struct. April 2014. PDF
[18] Burgos Gil J.I., Philippon P., Sombra M., Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque 360. 2014 . PDF
[19] Gromov, M. Symmetry, probability, entropy. Entropy 2015. PDF
[20] Gromov, M. Morse Spectra, Homology Measures, Spaces of Cycles and Parametric Packing Problems, april 2015. PDF
[21] Park., J.-S., Homotopy theory of probability spaces I: classical independence and homotopy Lie algebras. Archiv . 2015
[22] Baudot P., Bennequin D. The homological nature of entropy. Entropy, 17, 1-66; 2015. PDF
[23] Elbaz-Vincent, P., Gangl, H., Finite polylogarithms, their multiple analogues and the Shannon entropy. (2015) Vol. 9389 Lecture Notes in Computer Science. 277-285, Archiv.
[24] M. Marcolli, Information algebras and their applications. International Conference on Geometric Science of Information (2015), 271-276
[25] Abramsky S., Barbosa R.S., Lal K.K.R., Mansfield, S., Contextuality, Cohomology and Paradox. 2015. arXiv:1502.03097
[26] M. Nguiffo Boyom, Foliations-Webs-Hessian Geometry-Information Geometry-Entropy and Cohomology. Entropy 18(12): 433 (2016) PDF
[27] M. Nguiffo Boyom, A. Zeglaoui, Amari Functors and Dynamics in Gauge Structures. GSI 2017: 170-178
[28] G.-C. Drummond-Cole, Terila, Homotopy probability theory on a Riemannian manifold and the Euler equation , New York Journal of Mathematics, Volume 23 (2017) 1065-1085. PDF
[29] P. Forré,, JM. Mooij. Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders. In A. Globerson, & R. Silva (Eds.) (2018), pp. 269-278)
[30] T. Fritz and P. Perrone, Bimonoidal Structure of Probability Monads. Proceedings of MFPS 34, ENTCS, (2018). PDF
[31] Jae-Suk Park, Homotopical Computations in Quantum Fields Theory, (2018) arXiv:1810.09100 PDF
[32] G.C. Drummond-Cole, An operadic approach to operator-valued free cumulants. Higher Structures (2018) 2, 42–56. PDF
[33] G.C. Drummond-Cole, A non-crossing word cooperad for free homotopy probability theory. MATRIX Book (2018) Series 1, 77–99. PDF
[34] T. Fritz and P. Perrone, A Probability Monad as the Colimit of Spaces of Finite Samples, Theory and Applications of Categories 34, 2019. PDF.
[35] M. Esfahanian, A new quantum probability theory, quantum information functor and quantum gravity. (2019) PDF
[36] T. Leinster, Entropy modulo a prime, (2019) arXiv:1903.06961 PDF
[37] T. Leinster, E. Roff, The maximum entropy of a metric space, (2019) arXiv:1908.11184 PDF
[38] T. Maniero, Homological Tools for the Quantum Mechanic. arXiv 2019, arXiv:1901.02011. PDF
[39] M. Marcolli, Motivic information, Bollettino dell'Unione Matematica Italiana (2019) 12 (1-2), 19-41
[40] J.P. Vigneaux, Information theory with finite vector spaces, in IEEE Transactions on Information Theory, vol. 65, no. 9, pp. 5674-5687, Sept. (2019)
[41] Baudot P., Tapia M., Bennequin, D. , Goaillard J.M., Topological Information Data Analysis. (2019), Entropy, 21(9), 869
[42] Baudot P., The Poincaré-Shannon Machine: Statistical Physics and Machine Learning aspects of Information Cohomology. (2019), Entropy , 21(9),
[43] G. Sergeant-Perthuis, Bayesian/Graphoid intersection property for factorisation models, (2019), arXiv:1903.06026
[44] J.P. Vigneaux, Topology of Statistical Systems: A Cohomological Approach to Information Theory, PhD Thesis (2019).
[45] Forré, P., & Mooij, J. M. (2019). Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, (2019)
[46] Y. Manin, M. Marcolli Homotopy Theoretic and Categorical Models of Neural Information Networks. arXiv (2020) preprint arXiv:2006.15136
[47] T. Leinster The categorical origins of Lebesgue integration (2020) arXiv:2011.00412 PDF
[48] T. Fritz, T. Gonda, P. Perrone, E. Fjeldgren Rischel, Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability. (2020) arXiv:2010.07416 PDF
[49] T. Fritz, E. Fjeldgren Rischel, Infinite products and zero-one laws in categorical probability (2020) arXiv:1912.02769 PDF
[50] T. Fritz, A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics (2020) arXiv:1908.07021 PDF
[51] T. Fritz and P. Perrone, Stochastic Order on Metric Spaces and the Ordered Kantorovich Monad, Advances in Mathematics 366, 2020. PDF
[52] T. Fritz and P. Perrone, Monads, partial evaluations, and rewriting. Proceedings of MFPS 36, ENTCS, 2020. PDF.
[53] D. Bennequin. G. Sergeant-Perthuis, O. Peltre, and J.P. Vigneaux, Extra-fine sheaves and interaction decompositions, (2020) arXiv:2009.12646
[54] J.P. Vigneaux, Information structures and their cohomology, in Theory and Applications of Categories, Vol. 35, (2020), No. 38, pp 1476-1529.
[55] O. Peltre, Message-Passing Algorithms and Homology, PhD Thesis (2020), arXiv:2009.11631
[56] G. Sergeant-Perthuis, Interaction decomposition for presheafs, (2020) arXiv:2008.09029
[57] K. Hess, Topological adventures in neuroscience, in the Proceedings of the 2018 Abel Symposium: Topological Data Analysis, Springer Verlag, (2020).
[58] C. Curto, N. Youngs. Neural ring homomorphisms and maps between neural codes. Submitted. arXiv.org preprint.
[59] N.C. Combe, Y, Manin, F-manifolds and geometry of information, arXiv:2004.08808v.2, (2020) Bull. London MS.
[60] Abramsky, S. , Classical logic, classical probability, and quantum mechanics 2020 arXiv:2010.13326